" />
JUDUL
EPI AND PIQE
more
1 2 3 4 5

iklan

Jumat, 05 November 2010

chemistry

Expected Student Learning Outcomes (Chemistry 232 objectives):a) To be able to understanding physical properties of organic substances and fundamental chemical reactions in organic chemistry. b) To be able to determine bonds and hybridizations, Lewis structures, dynamics and stereo chemistry of simple organic molecules. c) To be able to depict chemical mechanisms for rudimentary organic reactions using the curved arrow formalism. d) To be able to determine and differentiate various types of simple organic reactions: SN1, SN2, E1and E2 pathways.e) To be able to understand the relationship between different functional groups and organic chemical reactions.f) To be able to see a connection and similarity between organic chemistry and the application on common “daily life” biochemical processes.g) To be able to apply and use the outcomes above and apply those in upper division organic chemistry (Chem 432), biochemistry, and more advanced organic chemistry and synthesis.Attendance: The lecture course consists of three 1-hour lectures per week. Lectures will be focused on the theoretical basis and understanding of important concepts of organic chemistry. You will not be penalized for not attending lectures directly, but indirectly it most likely will be reflected as lower course grades. Examinations: Three midterm exams will be given on Mondays outside the regular lecture schedule(Feb. 8, Mar. 8, and Apr. 19) from 5:00 p.m.- 7:00 p.m. You will be notified about the examination rooms in good time before you take the midterms. The final exam will be given on Friday, May 15 from10:30-12:30 a.m. No make up exams will be given. Excused absences, substantiated by an appropriate written confirmation, will result in no penalty. Unexcused absences will result in a “zero” and will account for an “F” grade for such exam. Grading policies: Your laboratory TA will grade all your submitted lab reports and quizzes. All TA’s will grade your midterms and final exam. Your grade will be assigned at the end of the semester and will be based on a curve using a +/- assignment. There are no pre-determined guidelines for the grade distribution. Most students earn a C, but in fact, it is not too difficult to earn a higher grade in organic chemistry. The laboratory component of the grade will be based on the completion of the experiments,the reports, unknowns, products, quizzes and an evaluation of experimental technique.Grading: Your course grade will be based on 500 points maximum. Summary: Midterm 1 100 points Midterm 2 100 Midterm 3 100 Final Exam 200Total 500 points (Chem 232)To the student and how to succeed in Organic Chemistry (and science in general)
baca selengkapnya »»

Kamis, 04 November 2010

ikatan kovalen

Ikatan Kovalen

Ditulis oleh Zulfikar pada 24-04-2010
Proses pembentukan kestabilan suatu atom tidak hanya melalui pelepasan dan penerimaan elektron, kenyataan kestabilan juga dapat dicapai dengan cara menggunakan elektron secara bersama. Bagaimana satu atom dapat menggunakan elektron terluarnya secara bersama dapat dilihat pada Gambar 5.6.
gambar 5.6
Gambar 5.6. Pasangan elektron bersama untuk atom F yang membentuk senyawa F2
Atom Flor, memiliki nomor atom 7, sehingga memiliki 7 (tujuh) elektron yang berada pada dua tingkat energi yaitu energi pertama (kulit K) dan tingkat energi kedua yaitu kulit L, elektron terdistribusi pada orbital 1s2, 2s2 dan orbital p5, seperti Gambar 5.6. Pada orbital p, dua elektron dibedakan (biru gelap) berasal dari atom F sebelah kiri dan kanan, kedua atom itu dipergunakan agar konfigurasinya mengikuti gas mulia. Gambar 5.7 A dan B, menunjukkan ikatan kovalen dari senyawa H2, dan adanya gaya tarik kovalen dari setiap inti atom H terhadap pasangan elektron, dan dapat ditarik kesimpulan bahwa gaya tarik-menarik bersih (netto) yang terjadi ketika setiap atom memberikan 1 (satu) elektron tidak berpasangan untuk dipasangkan dengan elektron dari atom yang lain, pada satu ruang kosong, maka pasangan elektron ditarik oleh kedua inti atom tersebut.
gambar 5.7
Gambar 5.7. Ikatan kovalen yang terjadi pada atom H membentuk H2, dengan menggunakan elektron bersama dari orbital 1s1
Ikatan kovalen terjadi karena atom-atom yang berikatan memiliki kelektronegatifan yang setara dan tidak memiliki kelebihan orbital kosong yang berenergi rendah.
Kondisi semacam ini tampak pada unsur-unsur non logam, paling tidak terdapat antara 4 (elektron) sampai 8 (delapan) elektron yang berada pada kulit terluar. Beberapa pengecualian perlu diperhatikan khususnya untuk unsur H (hidrogen) elektron valensi 1s1 (satu elektron pada tingkat energi terendah, (Helium) elektron 1s2 (dua elektron pada tingkat energi terendah. Demikianpula untuk B (Boron) memiliki 3 elektron valensi (2s2, 2p1), sehingga unsur non logam cenderung membentuk ikatan kovalen.
Beberapa unsur non logam yang membentuk senyawa kovalen seperti, Hidrogen (H), Karbon (C), Nitrogen(N), Oksigen (O), Posfor (P), Sulfur atau Belerang (S) dan Selenium (Se). Atas dasar kemampuan menarik atau melepas elektron, umumnya muatan dari unsur-unsur non logam adalah +4, -4, -3, -2 dan -1.
Panggambaran ikatan kovalen didasari pada kaidah oktet (delapan) atau octet rule, menurut kaidah ini elektron valensi berjumlah delapan (s2 dan p6) sebagai bentuk kestabilan dari konfigurasi gas mulia, sehingga jumlah 8 (delapan) elektron merupakan jumlah yang harus dipenuhi untuk membentuk ikatan kovalen, kecuali untuk hidrogen hanya dua elektron. Lewis memperkenalkan cara penulisan ikatan dan senyawa kovalen, pasangan elektron yang dipergunakan bersama digambarkan sebagai garis lurus. Gambar 5.8, menjelaskan dan menyederhanakan cara penulisan dan penggambaran senyawa kovalen untuk beberapa senyawa kovalen yang dibentuk dari atom yang berbeda.
gambar 5.8
Gambar 5.8. Ikatan molekul dengan atom penyusun yang berbeda atom H dan O, membentuk senyawa air
Ikatan kovalen dapat terbentuk dari beberapa pasangan elektron, seperti tunggal contohnya F2 atau H2, namun dapat pula terjadi rangkap dua seperti pada molekul gas CO2, dan rangkap tiga terjadi gas astilen C2H2.
Pada molekul CO2, atom Karbon menyumbangkan 2 (dua) elektron untuk setiap atom oksigen, demikianpula dengan atom oksigen masing-masing memberikan 2 (dua) elektronnya.
Untuk molekul C2H2, dua atom Karbon saling memberikan 3 (tiga elektronnya) sehingga terjadi tiga pasangan elektron, dan setiap atom Karbon juga menyumbangkan satu elektronnya ke atom hidrogen, sedangkan kedua atom hidrogen, masing-masing memberikan satu elektronnya kepada karbon dan membentuk 2 (dua) pasangan elektron, perhatikan Gambar 5.9.
gambar 5.9
Gambar 5.9. Ikatan kovalen rangkap dua pada senyawa CO2 dan rangkap tiga pada senyawa C2H2
Secara teliti, jika kita amati ikatan kovalen antara dua atom yang berbeda akan terlihat bahwa salah satu inti atom lebih besar dari atom yang lainnya, misalnya air, yang disusun oleh satu atom oksigen dan dua atom H, seperti pada Gambar 5.10. Inti atom oksigen jauh lebih besar dan jumlah muatan protonnya juga lebih banyak, sehingga 2 pasang dari pasangan elektron yang dibentuk oleh atom H dan O akan lebih tertarik ke inti atom oksigen. Hal ini menyebabkan, atom oksigen lebih bermuatan negatif dan masing-masing atom hidrogen akan bermuatan sedikit postif, dengan demikian terjadi polarisasi muatan dalam senyawa tersebut, dan terbentuk dua kutub (positif dan negatif) atau dipol.
gambar 5.10
Gambar 5.10. Momen dipol dan sebaran muatan parsial negatif yang ditunjukkan arah resultante momen dipol untuk molekul H2O, SO2 dan CO2
Perbedaan muatan untuk senyawa dipol dinyatakan dalam momen dipol. Perhitungan momen dipol didasari atas perbedaan keelektronegatifan dari atom-atom penyusunnya. Secara kualitatif kita dapat memprediksi terjadinya polarisasi muatan dan resultante momen dipol yang dapat dipergunakan untuk melihat sebaran dari muatan parsial positif dan parsial negatif, seperti yang ditunjukkan oleh molekul air, sulfur dioksida dan karbondioksida pada Gambar 5.10. Dari gambar tampak bahwa untuk molekul air muatan parsial negatif terakumulasi di atom Oksigen, sama halnya dengan molekul sulfurdioksida. Berbeda dengan seyawa CO2 tidak terjadi polarisasi.
Ikatan kovalen yang memiliki bentuk lain juga diamati, dimana ikatan terbentuk akibat sebuah senyawa memiliki sepasang elektron yang tidak dipergunakan (pasangan elektron bebas) disumbangkan kepada sebuah ion atau senyawa, ikatan ini disebut juga dengan ikatan kovalen koordinasi. Contoh menarik yang dapat kita temui adalah pembentukan ion amonium dan pembentukan senyawa BF3NH3.
Molekul NH3 terpusat pada atom Nitrogen yang memiliki 5 (lima) elektron valensi, 2 elektron pada orbital s (2s2) dan 3 elektron pada orbital p (2p3). Tiga elektron pada orbital p dari Nitrogen membentuk pasangan electron dengan 3 elektron dari atom H masing-masing memiliki satu elektron, elektron valensi orbital s atom Nitrogen belum dipergunakan, dan disebut dengan pasangan elektron bebas. Pasangan elektron bebas hanya dapat disumbangkan kepada ion yang kekurangan elektron, misalnya ion H+ atau molekul Boron triflorida BF3.
Kita ketahui bahwa atom memiliki satu buah proton dan satu buah elektron, atom H akan berubah menjadi ion H+, jika melepaskan elektronnya, sehingga orbital 1s-nya tidak berisi elektron, dan orbital s inilah yang akan menerima sumbangan dari pasangan elektron bebas dari senyawa NH3. Dengan diterimanya elektron dari senyawa NH3, maka konfigurasi ion H+ memiliki dua elektron. Bagan reaksi 5.11, menyederhanakan terjadinya ikatan kovalen koordinasi.
Bagan 5.11. Bagan reaksi proses pembentukan ikatan kovalen koordinasi, (a) pembentukan ion H+ dari atom H dan (b) NH3 menyumbang elektron bebasnya membentuk ion amonium (NH4)+
bagan 5.11
Sedangkan untuk molekul NH3BF3, pasangan elektron bebas diberikan kepada atom pusat molekul BF3 yaitu B (Boron). Atom ini memiliki memiliki elektron valensi 2s2 dan 2p1. Pembentukan molekul BF3 cukup unik, pertama-tama elektron pada orbital s berpindah ke orbital p, sehingga konfigurasi yang lebih teliti adalah 2s1, 2px1, 2py1 dan 2pz0 masih tetap kosong. Orbital yang berisi satu elektron ini dipergunakan secara bersama dengan 3 (tiga) atom F, sehingga membentuk ikatan kovalen. Atom B masih memiliki orbital kosongnya yaitu 2pz0 dan orbital inilah yang menerima sumbangan pasangan elektron bebas dari molekul NH3 dan membentuk membentuk ikatan kovalen koordinasi dari molekul NH3BF3. Proses pembentukannya dapat dilihat pada Bagan 5.12.
Bagan 5.12. Bagan reaksi proses pembentukan ikatan kovalen BF3 dan ikatan kovalen koordinasi antara molekul NH3 dan molekul BF3
bagan 5.12
Dalam ikatan kovalen dapat pula membentuk ion, misalnya ion hidroksida (OH)- ion ini terbentuk karena terjadi pasangan elektron antara atom H dan O, namun oksigen memiliki kelebihan elektron sebanyak satu buah, dan menyebabkan terbentuknya ion (OH)-. Contoh lain adalah ion Carbonat (CO3)2-, yang terbentuk dari satu ikatan rangkap dua antara atom C dengan O, dan dua ikatan tunggal antara atom C dengan atom O, namun 2 atom oksigen kelebihan masing-masing satu elektron, sehingga ion ini kebihan 2 muatan negatif. Pembentukan anion untuk senyawa dengan ikatan kovalen ditunjukkan pada Gambar 5.13.
gambar 5.13
Gambar 5.13. Anion hidroksida (OH)- dan carbonat (CO3) 2-yang dibentuk melalui ikatan kovalen
Dari tinjauan energi, pembentukan ikatan kimia melalui ikatan kovalen merupakan reaksi eksoterm, berbeda dengan ikatan ion yang justru membutuhkan energi (endoterm), dan umumnya reaksi eksoterm berlangsung secara spontan, sehingga senyawa yang dibentuk oleh ikatan kovalen lebih banyak dibandingkan dengan senyawa yang dibentuk oleh ikatan ion. Molekul yang membangun sel makhluk hidup berupa protein, lemak, karbohidrat merupakan contoh molekul atau senyawa yang dibentuk oleh ikatan kovalen.
baca selengkapnya »»

efek toksik merkuri metalik HgO

 Merkuri dilambangkan dengan Hg, akronim dari Hydragyrum yang berarti perak cair. Merkuri merupakan salah satu unsur logam yang terletak pada golongan II B pada sistem periodik, dengan nomor atom 80 dan nomor massa 200.59.  Logam merkuri dihasilkan secara alamiah diperoleh dari pengolahan  bijihnya, Cinabar, dengan oksigen (Palar;1994).
Logam merkuri yang dihasilkan  ini, digunakan dalam sintesa senyawa senyawa anorganik dan organik yang mengandung merkuri. Dalam kehidupan sehari-hari, merkuri berada dalam tiga bentuk dasar, yaitu : merkuri metalik, merkuri anorganik dan merkuri organik
Merkuri metalik dikenal juga dengan istilah merkuri unsur (mercury element), merupakan bentuk logam dari merkuri. logam ini berwarna perak. Jenis merkuri ini digunakan pada alat-alat laboratorium seperti termometer raksa, termostat, spignometer, barometer dan lainya. Secara umum logam merkuri memiliki karakteristik sebagai berikut, Berwujud cair pada suhu kamar (250C) dengan titik beku (-390C). Merupakan logam yang paling mudah menguap. Memiliki tahanan listrik yang sangat rendah, sehingga digunakan sebagai penghantar listrik yang baik. Dapat membentuk alloy dengan logam lain (disebut juga dengan amalgam)
Merkuri metalik digunakan secara luas dalam industri, diantaranya sebagai katoda dalam elektrolisis natrium klorida untuk menghasilkan soda kautik (NaOH) dan gas klorin. Logam ini juga digunakan proses ektraksi logam mulia, terutama ekstraksi emas dari bijihnya, digunakan juga sebagai katalis dalam industri kimia serta sebagai zat anti kusam dalam cat.
Merkuri metalik dapat masuk kedalam tubuh manusia melalui saluran pernapasan. Termometer merkuri yang pecah merupakan salah satu contohnya. Ketika termometer pecah, sebagian dari merkuri menguap ke udara. Merkuri metalik tersebut dapat terhirup oleh manusia yang berada di dekatnya.
Delapan puluh persen  (80%) dari merkuri uap  yang terhirup, diabsorbsi oleh alveoli paru-paru. Merkuri metalik ini masuk dalam sistem peredaran darah manusia dan dengan bantuan hidrogen peroksidase merkuri metalik akan dikonversi menjadi merkuri anorganik.
Penggunaan merkuri metalik yang lain dan paling umum adalah pada amalgam gigi. Amalgam gigi mengandung 50 % unsur merkuri, 35 % perak, 9 % timah 6 % tembaga dan seng.  Amalgam  ini digunakan sebagai penambal gigi berlobang.
Tambalan amalgam melepaskan partikel mikroskopik dan uap merkuri. Kegiatan mengunyah dan  meminum makanan dan minuman yang panas menaikan frekuensi lepasnya tambalan gigi. Uap merkuri tersebut akan di serap oleh akar gigi, selaput lendir dari mulut dan gusi, dan ditelan, lalu sampai ke kerongkongan dan saluran cerna.
Merkuri metalik dalam saluran gastrointestinal akan dikonversi menjadi merkuri sulfida dan diekskresikan melalui feces. Para peneliti dari Universitas Of Calgari melaporkan bahwa 10 % merkuri yang berasal dari amalgam pada akhirnya terakumulasi di dalam organ-organ tubuh (McCandless;2003)
Merkuri metalik larut dalam lemak dan didistribusikan keseluruh tubuh. Merkuri metalik dapat menembus Blood-Brain Barier (B3) atau Plasenta Barier. Keduanya merupakan selaput yang melindungi otak atau janin dari senyawa yang membahayakan. Setelah menembus Blood-Brain Barier, merkuri metalik akan terakumulasi dalam otak. Sedangkan merkuri yang menembus  Placenta Barier akan merusak pertumbuhan dan perkembangan janin.
Referensi
Kaim, wolfgang. 1951, Bioinorganik Chemistry : Inorganic Element In The Chemistry Of Life : An Introduction and Guide. England  John Wiley & Sons.
McCandless, Jaquelyn., Siregar, Ferdina (ptjm). 2003, Anak-anak dengan Otak yang “lapar”, Panduan  penanganan medis untuk penyandang ganguan spectrum autism (tjm). Jakarta. Grasindo.
Palar, Heryanto. 1994, Pencemaran dan Toksikologi Logam Berat. Jakarta. Rineke Cipta.
Patrick, Lyn. 2002, Mercury Toxicity and Anti Oksidant: part I: Role Of Gluthatione And Alpha-Lipoic Acid in The Treatment of Mercury Toxicity. Alternative Medicine Review Vol 7 (6) 456-471.
baca selengkapnya »»

tabel periodik baru dengan perpanjangan unsur

Tabel periodik baru dengan perpanjangan unsur

Kata Kunci:
Ditulis oleh Soetrisno pada 26-10-2010
Tabel periodik baru yang diperpanjang dengan 54 elemen telah dipetakan oleh seorang ahli kimia di Finlandia.
Tabel periodik unsur diusulkan pada tahun 1869 oleh Dimitri Mendeleev. Mendeleev telah berhasil mengorganisir unsur-unsur dengan memprediksi keberadaannya bahkan sifat-sifat unsur itu belum dikenal termasuk galium (pertama kali diisolasi pada 1875).
Saat ini, Seorang kimiawan Finlandia, Pekka Pyykkö di University of Helsinki telah menggunakan model komputasi yang sangat akurat untuk memprediksi struktur elektronik unsur dan menambahkan posisi tabel periodik unsur sampai jumlah proton 172 – jauh melampaui batas elemen yang ilmuwan saat ini dapat disintesis.
Tabel periodik yang diusulkan baru untuk elemen
54 tambahan elemen super berat yang diprediksi oleh Pyykkö mungkin ada di bawah kondisi ekstrim dengan masa hidup yang sangat singkat karena peluruhan radioaktif.  Namun, saat ini belum ada penelitian yang dapat mensintesis elemen super berat tersebut.
Seorang ahli dalam teori struktur elektronik, Peter Schwerdtfeger di Massey University di Auckland, Selandia Baru, berkomentar: “Kimia tidak dapat terpikirkan tanpa tabel periodik unsur. Pyykkö telah menggunakan perhitungan relativitas melampaui unsur yang dikenal ke wilayah yang tidak diketahui. ”
Namun ia menambahkan bahwa kerja di bidang ini telah menjadi subyek perdebatan antara ahli yang tidak setuju pada penempatan elemen-elemen tertentu. Untuk atom nuklir dengan muatan yang sangat tinggi, inti bisa menangkap elektron yang mengorbit dan memancarkan neutrino menyebabkan jumlah proton berkurang satu per satu.
Perdebatan hanya dapat diselesaikan setelah semua unsur yang diprediksi telah disintesis tetapi Pyykkö tidak mengharapkan hal ini terjadi dalam waktu dekat. “Sulit untuk mengatakan seberapa jauh penelitian akan menemukan elemen-elemen baru selama abad ini, mungkin dekat dengan 130, jika tidak lebih”, ia menyimpulkan.
baca selengkapnya »»